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Summary: A concise synthesis of desacetamido P-3A (2)
is detailed which is based on an inverse electron demand
[4 + 2] cycloaddition reaction of 2,4,6-tris(ethoxy-
carbonyl)-1,3,5-triazine with in situ generated 1,1-di-
aminoethene for the one-step preparation of an appro-
priately functionalized pyrimidine core.

P-3A (1),! a peptide-derived natural product isolated in
the conduct of biosynthetic studies of the bleomycins and
whose structure was unambiguously established in a sin-
gle-crystal X-ray structure determination of its copper(II)
complex, represents the simplest member of the class of
agents related to the clinically important bleomycin an-
titumor antibiotics.?2 Its timely identification and the
structural characterization of the copper(II) complex es-
tablished the functionality responsible for metal chelation.
Pertinent to the studies detailed herein, this provided the
initial indication that the C2-acetamido side chain of P-3A
and the related bleomycins may not be involved in the
metal chelation. Herein, we detail the synthesis of desa-
cetamido P-3A (2) based on the inverse electron demand
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Diels—Alder reaction?® of 2,4,6-tris(ethoxycarbonyl)-1,3,5-
triazine (5)* in studies which establish the viability of a
concise approach to the heterocyclic nucleus central to the
structure of P-3A (1), pyrimidoblamic acid (3),° bleomycin
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A, (4)® and structurally related agents.” The pyrimidine
nucleus constitutes the core of the iron(II) chelating sub-
unit required for O, activation and the subsequent dou-
ble-stranded DNA cleavage thought to be responsible for
the therapeutic action of the agents.

Treatment of 5% with acetamidine hydrochioride (6)
provided the pyrimidine 9 in a reaction that proceeds
through reversible in situ tautomerization of 6 to 1,1-di-

Figure 1.
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aminoethene and its participation in an effective [4 + 2]
cycloaddition reaction with 5 (Scheme I). The subsequent
elimination of ammonia, tautomerization to 8, and retro-
Diels—Alder loss of ethyl cyanoformate under the reaction
conditions provided 9 directly in a reaction cascade for
which the conversions proved sensitive to the reaction
conditions. The thermal conditions (>80 °C) detailed
facilitate amidine 6 tautomerization and are required for
effecting the retro-Diels—Alder reaction of the initial [4 +
2] cycloadduct. Studies of the reaction of enamines with
5 in which the [4 + 2] cycloaddition reaction was found
to occur at room temperature have demonstrated that the
retro-Diels—Alder reaction of such adducts occur only
slowly under thermal conditions (100-200 °C) and suffer
from a problematic aromatization reaction. Acid catalysis
proved to promote both the retro-Diels—Alder reaction and
the subsequent aromatization reaction, and useful con-
versions to pyrimidine products were observed at ca. 100
°C in the presence of acetic acid or p-TsOH. In the con-
version of 5 and 6 to 9, the retro-Diels~Alder reaction of
8 and the tautomerization reaction of 7 requiring loss of
ammonia are facilitated by the presence of an acid catalyst
(HC]) derived from the use of the amidine hydrochloride.

Selective reduction of the electrophilic C2-ethoxy-
carbonyl group provided 10 and was most effectively
conducted with sodium borohydride at low temperature
(=30 to —20 °C, Scheme II). Although the reduction
proceeded in a satisfactory manner in ethanol, the reaction
proved much faster (1-3 vs 6 days), cleaner (75-88% vs
68-78%), and more selective (6-~7:1 vs 2-4:1 C2-
CH,0H/C4-CH,0H) when conducted in 2-propanol (3
days) or 1:2 t-BuOH~THF (7:1 C2-CH,0H/C4-CH,0H,
87%, 24 h) presumably due to the enhanced stability of
the reagent to the reaction conditions.® Conversion of 10
to the corresponding tosylate 11 (95%) followed by clean
displacement with amine 121° and subsequent protection
of the secondary amine provided 13 (80%, two steps).
Ethyl ester hydrolysis (91%) and EDCI-promoted coupling

(9) 2D 'H-'H NOESY NMR of the isomeric alcohols and the corre-
sponding tosylates derived from the ma)or and minor reduction products
unambiguously confirmed the isomer assignments through observation
of a diagnostic —CHQOR/C5-H NOE crosspeak for the minor isomer.

(10) (a) Prepared from L-serine by the following reactions: (i) MeOH,
SOCL,; (ii) Boc,0, K,C0O4, THF-H,0, 22 °C, 10 h, 90% for two steps; (m)
HN,, DEAD, PhyP, THF, =70 to 22 °C, 8 h, 88%, fob (iv) NH,;, MeOH, -20
10 20 °C, Th, 85%; (V) Hz, 10% Pd—C MeOH 29 °C,5h,95%. (b) For
the preparation and use of N"-Boc-L-ﬁ-ammoalanme methyl ester, see
Otsuka, M.; Kittaka, A.; [imori, T.; Yamashita, H.; Kobayashi, S.; Ohno,
M. Chferr; S’harm. Bull. 1985, 33, 509. For alternative preparations of 12,
see ref 5b,d.
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of the carboxylic acid 14 with Ni®-Boc-L-His-L-Ala-OBut
(15)!! provided desacetamido P-3A in its fully protected
form 16 (80%).12 Acid-catalyzed deprotection provided
2 [90%, [a]2p ~13.3 (c 0.15, CH,0H), [«]%p —18.0 (c 0.15,
0.1 N HCD)].

(11) Prepared from Ne-CBZ-L-histidine (17) and L-alanine tert-butyl
ester hydrochloride (18) by the following reactions: (i) 17, Boc,0, aq
NaOH (86%); (ii) 18, EDCI, HOBt, DMF (51%); (iii) H,, 10% Pd-C,
CH;OH (90%). The attempts to use the corresponding methyl ester of
15 resulted in significant amounts of intramolecular lactam formation
with diketopiperazine formation.

(12) EDCI = [3-(dimethylamino)propyl)]ethylcarbodiimide, HOBt =
1-hydroxybenzotriazole.

The examination of the properties of 2 as well as the
extension of this work to the synthesis of P-3A, pyrimi-
doblamic acid, and the bleomycins are in progress and will
be reported in due course.
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Summary: A molecular reaction between m-chloroper-
benzoic acid and C-phenyl-N-tert-butylnitrone (PBN)
produces significant amounts of aminoxyl radicals assigned
to the m-chlorobenzoyloxyl adduct of PBN and benzoyl-
tert-butylaminoxyl.

m-Chloroperbenzoic (CPBA) acid is commonly used as
a reagent for producing epoxides from olefins.! m-
Chlorobenzoic acid (CBA) is the only other product
formed. In an analogous reaction with C-phenyl-N-tert-
butylnitrone (PBN), the compounds benzaldehyde and
2-methyl-2-nitrosopropane might be produced since the
oxazirane N-oxide 1 is not expected to be stable:

o H O
| cPBA L,
C°H50H=NC4H9 T CeHs—C-N"—C,Hg | =
- N/
o]
1
O (o}
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However, if a precursor molecular addition product is
formed having the structure of the hydroxylamine of the
peroxyl adduct 2 this addition product might be expected
to produce aminoxyl radicals spontaneously by an internal
redox reaction:
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The products would be the hydroxyl adduct of PBN 3 and
the m-chlorobenzoyloxyl radical 4. The latter should be
readily trapped by PBN? to give the spin adduct 5.
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Another mechanism involving oxidation of 2 before in-
ternal disproportionation is possible:
o.
[
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If the reaction within the solvent cage is very efficient then
approximately equal amounts of 5 and 6 might be ex-
pected. Decomposition of peroxyl adducts is known to
produce acyl aminoxyls 6 and oxyl adducts of PBN 5.8
The benzoyloxyl adduct of 2-methyl-2-nitrosopropane
(MNP) is not known. In general, oxyl adducts of MNP
are not persistent aminoxyls at room temperature.
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