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Summary: A concise synthesis of desacetamido P-3A (2) 
is detailed which is based on an inverse electron demand 
14 + 21 cycloaddition reaction of 2,4,6-tris(ethoxy- 
carbonyl)-1,3,btriazine with in situ generated 1,l-di- 
aminoethene for the one-step preparation of an appro- 
priately functionalized pyrimidine core. 

P-3A (l),l a peptide-derived natural product isolated in 
the conduct of biosynthetic studies of the bleomycins and 
whose structure was unambiguously established in a sin- 
gle-crystal X-ray structure determination of ita copper(II) 
complex, represents the simplest member of the class of 
agenta related to the clinically important bleomycin an- 
titumor antibiotim2 Ita timely identification and the 
structural characterization of the copper(I1) complex es- 
tablished the functionality responsible for metal chelation. 
Pertinent to the studies detailed herein, this provided the 
initial indication that the C2-acetamido side chain of P-3A 
and the related bleomycins may not be involved in the 
metal chelation. Herein, we detail the synthesis of desa- 
cetamido P-3A (2) based on the inverse electron demand 
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Diels-Alder reaction3 of 2,4,6-tris(ethoxycarbonyl)-1,3,5- 
triazine in studies which establish the viability of a 
concise approach to the heterocyclic nucleus central to the 
structure of P-3A (l), pyrimidoblamic acid (3): bleomycin 
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1 R=CHzCONHZ,P-3A 
2 R = H, deaacatamido P-3A 

3 pyrimidoblamic acid P-3A cu*2 

I H  H 

4 bleomyanb 

Figure 1. 

A2 (4)6 and structurally related agents.' The pyrimidine 
nucleus constitutes the core of the iron(I1) chelating sub- 
unit required for O2 activation and the subsequent dou- 
ble-stranded DNA cleavage thought to be responsible for 
the therapeutic action of the agents. 

Treatment of 54p8 with acetamidine hydrochloride (6) 
provided the pyrimidine 9 in a reaction that proceeds 
through reversible in situ tautomerization of 6 to 1,l-di- 
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aminoethene and its participation in an effective [4 + 21 
cycloaddition reaction with 5 (Scheme I). The subsequent 
elimination of ammonia, tautomerization to 8, and retro- 
Diels-Alder loss of ethyl cyanoformate under the reaction 
conditions provided 9 directly in a reaction cascade for 
which the conversions proved sensitive to the reaction 
conditions. The thermal conditions (>80 OC) detailed 
facilitate amidine 6 tautomerization and are required for 
effecting the retro-Diels-Alder reaction of the initial [4 + 
21 cycloadduct. Studies of the reaction of enamines with 
5 in which the [4 + 21 cycloaddition reaction was found 
to occur at room temperature have demonstrated that the 
retro-Diels-Alder reaction of such adducts occur only 
slowly under thermal conditions (100-200 "C) and suffer 
from a problematic aromatization reaction! Acid catalysis 
proved to promote both the retro-Diels-Alder reaction and 
the subsequent aromatization reaction, and useful con- 
versions to pyrimidine products were observed at  ca. 100 
"C in the presence of acetic acid or p-TsOH. In the con- 
version of 5 and 6 to 9, the retro-Diels-Alder reaction of 
8 and the tautomerization reaction of 7 requiring loss of 
ammonia are facilitated by the presence of an acid catalyst 
(HC1) derived from the use of the amidine hydrochloride. 

Selective reduction of the electrophilic C2-ethoxy- 
carbonyl group provided 10 and was most effectively 
conducted with sodium borohydride at low temperature 
(-30 to -20 OC, Scheme 11). Although the reduction 
proceeded in a satisfactory manner in ethanol, the reaction 
proved much faster (1-3 vs 6 days), cleaner (7548% vs 
6&78%), and more selective (6-7:l vs 2-4:l C2- 
CH20H/C4-CH20H) when conducted in 2-propanol (3 
days) or 1:2 t-BuOH-THF (7:l C2-CH20H/C4-CH20H, 
87%, 24 h) presumably due to the enhanced stability of 
the reagent to the reaction conditions.s Conversion of 10 
to the corresponding tosylate 11 (95%) followed by clean 
displacement with amine 121° and subsequent protection 
of the secondary amine provided 13 (80%, two steps). 
Ethyl ester hydrolysis (91%) and EDCI-promoted coupling 

(9) 2D 'H-lH NOESY NMR of the isomeric alcohols and the corre- 
sponding toaylates derived from the major and minor reduction products 
unambiguously confirmed the isomer assignments through observation 
of a diagnostic -CHzOR/C5-H NOE croespeak for the minor isomer. 

(10) (a) Prepared from L-serine by the following reactions: (i) MeOH, 
SOC1,; (ii) -0, K2COs, THF-HzO, 22 "C, 10 h, 90% for two steps; (iii) 
HNs, DEAD, PhaP, THF, -70 to 22 OC, 8 h, 88%,'Ob (iv) NHs, MeOH, -20 
to 20 OC, 7 h, 85%; (v) €I2, 10% Pd-C, MeOH, 22 OC, 5 h, 95%. (b) For 
the preparation and use of N'-Boc-L-j3-aminoalanine methyl ester, see: 
Otauka, M.; Kittaka, A.; Iimori, T.; Yamaahita, H.; Kobayaehi, S.; Ohno, 
M. Chem. Pharm. Bull. 1985,33,509. For alternative preparations of 12, 
see ref 5b,d. 
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of the carboxylic acid 14 with P-Boc-L-His-L-Ala-OBut 
( 15)11 provided desacetamido P-3A in ita fully protected 
form 16 (80% ).I2 Acid-catalyzed deprotection provided 
2 [W%, [.InD -13.3 (c 0.15, CH8OH); [ a ] 2 2 ~  -18.0 (c 0.15, 
0.1 N HCl)]. 

(11) Prepared from NWBZL-histidine (17) and L-alanine tert-butyl 
ester hydrochloride (18) by the following reactions: (i) 17, Boc20, aq 
NaOH (86%); (ii) 18, EDCI, HOBt, DMF (51%); (iji) H,, 10% Pd-C, 
CHSOH (90%). The attempts to use the corresponding methyl ester of 
15 resulted in significant amounta of intramolecular lactam formation 
with diketopiperazine formation. 

(12) EDCI = [3-(dmethylamino)propyl)]ethylcarbodiimide, HOBt = 
1-hydroxybenzotriazole. 

The examination of the properties of 2 as well as the 
extension of this work to the synthesis of P-3A, pyrimi- 
doblamic acid, and the bleomycins are in progress and d 
be reported in due course. 
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Summary: A molecular reaction between m-chloroper- 
benzoic acid and C-phenyl-N-tert-butylnitrone (PBN) 
produces significant amounta of aminoxyl radicals assigned 
to the m-chlorobenzoyloxyl adduct of PBN and benzoyl- 
tert- butylaminoxyl. 

m-Chloroperbenzoic (CPBA) acid is commonly used as 
a reagent for producing epoxides from olefins.' m- 
Chlorobenzoic acid (CBA) is the only other product 
formed. In an analogous reaction with C-phenyl-N-tert- 
butylnitrone (PBN), the compounds benzaldehyde and 
2-methyl-2-nitrosopropane might be produced since the 
oxazirane N-oxide 1 is not expected to be stable: 
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However, if a precursor molecular addition product is 
formed having the structure of the hydroxylamine of the 
peroxyl adduct 2 this addition product might be expected 
to produce aminoxyl radicals spontaneously by an internal 
redox reaction: 

H 
C6H5,1 /C4H9 

C-N 
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@i-OOo**HO A 
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The products would be the hydroxyl adduct of PBN 3 and 
the m-chlorobenzoyloxyl radical 4. The latter should be 
readily trapped by PBN2 to give the spin adduct 5. 
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Ar2 = 3-Cmt3H4 
Arl = C&I5 

Another mechanism involving oxidation of 2 before in- 
ternal disproportionation is possible: 
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O0 
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Ar2-C' 
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AqCHO + NC4H8 - 6 +CBA 

aolvent 
caO9 

If the reaction within the solvent cage is very efficient then 
approximately equal amounts of 5 and 6 might be ex- 
pected. Decomposition of peroxyl adducts is known to 
produce acyl aminoxyls 6 and oxyl adducts of PBN 5.9 
The benzoyloxyl adduct of 2-methyl-2-nitrosopropane 
(MNP) is not known. In general, oxyl adducts of MNP 
are not persistent aminoxyls at room temperature. 
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